

UCI224D - Winding 311

Technical Data Sheet

SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

SX460 AVR - OBSOLETE

With this self excited control system the main stator supplies power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three phase full wave bridge rectifier. This rectifier is protected by a surge suppressor against surges caused, for example, by short circuit.

AS440 AVR - STANDARD

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a threephase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained overexcitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

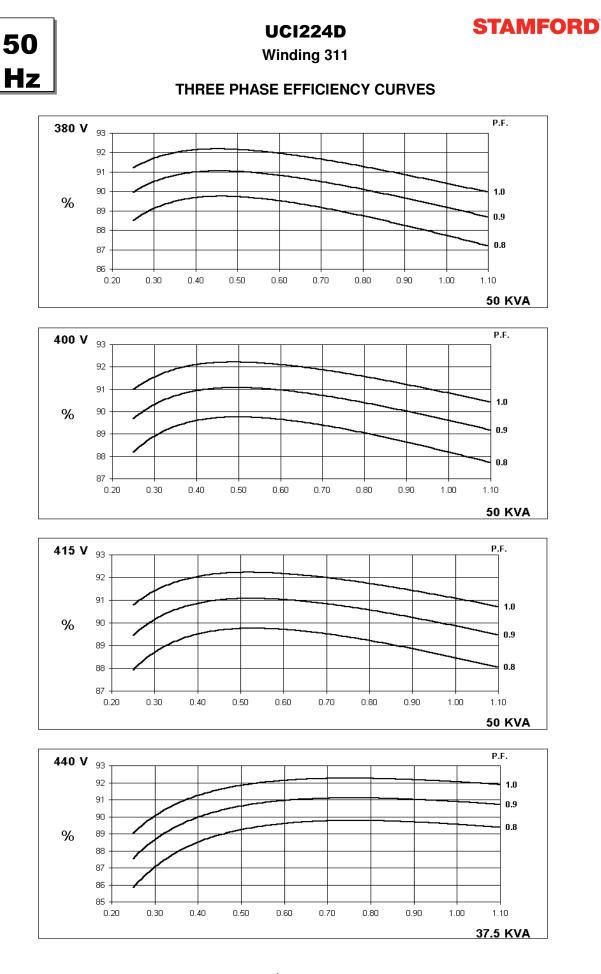
5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5°C by which the operational ambient temperature exceeds 40°C.

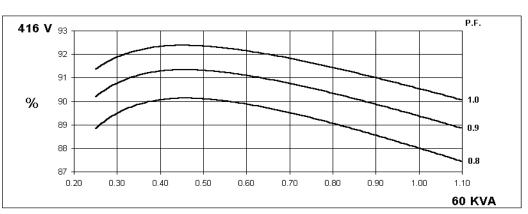
Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

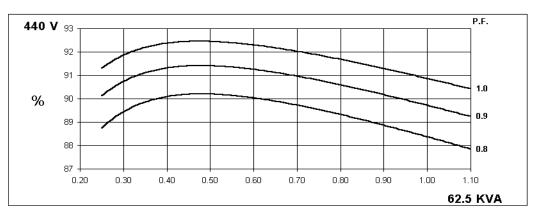
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

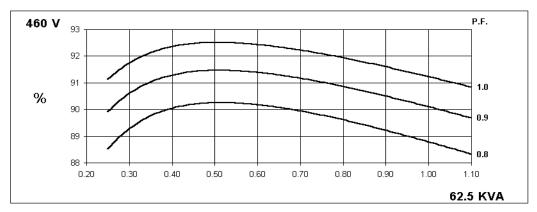

Front cover drawing typical of product range.

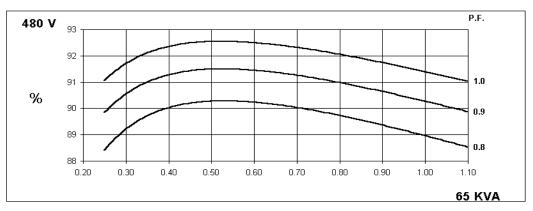
WINDING 311

CONTROL SYSTEM	SEPARATE	LY EXCITED	BY P.M.G.										
A.V.R.	MX321	MX341											
VOLTAGE REGULATION	± 0.5 % ± 1.0 % With 4% ENGINE GOVERNING												
SUSTAINED SHORT CIRCUIT			UIT DECREI										
CONTROL SYSTEM	SELF EXCIT	ED											
A.V.R.	SX460	AS440											
	± 1.0 %	± 1.0 %	With 4% FN		RNING								
SUSTAINED SHORT CIRCUIT			ES NOT SUS			CURRENT							
INSULATION SYSTEM				CLAS	SS H								
PROTECTION		IP23											
RATED POWER FACTOR				0.	8								
STATOR WINDING			DO	UBLE LAYEF		RIC							
WINDING PITCH			-	TWO T									
WINDING LEADS				1									
		0 100 (
STATOR WDG. RESISTANCE		0.1290	Dhms PER PI				UTED						
ROTOR WDG. RESISTANCE				0.64 Ohm									
EXCITER STATOR RESISTANCE				21 Ohms		Ŷ							
EXCITER ROTOR RESISTANCE			0.07	1 Ohms PER	PHASE AT 2	2°C							
R.F.I. SUPPRESSION	BS EN	N 61000-6-2 8	& BS EN 6100	00-6-4,VDE 0	875G, VDE 0	875N. refer to	o factory for c	thers					
WAVEFORM DISTORTION		NO LOAD «	< 1.5% NON-	DISTORTING	G BALANCE	D LINEAR LO	AD < 5.0%						
MAXIMUM OVERSPEED			2250 Rev/Min										
BEARING DRIVE END				BALL. 6312	-2RS (ISO)								
BEARING NON-DRIVE END				BALL. 6309	-2RS (ISO)								
	1 BEARING 2 BEARING												
WEIGHT COMP. GENERATOR		285	5 kg		290 kg								
WEIGHT WOUND STATOR			kg		86 kg								
WEIGHT WOUND ROTOR			28 kg		77.9 kg 0.4198 kgm ²								
			6 kgm ²				-						
SHIPPING WEIGHTS in a crate PACKING CRATE SIZE			7 kg x 96(cm)			311 97 x 57 x	•						
			Hz			60	()						
TELEPHONE INTERFERENCE			-:- <u>-</u> -<2%		TIF<50								
COOLING AIR		0.216 m ³ /s	ec 458 cfm		0.281 m³/sec 595 cfm								
VOLTAGE SERIES STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277					
VOLTAGE PARALLEL STAR	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138					
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138					
kVA BASE RATING FOR REACTANCE	50	50	50	37.5	60	62.5	62.5	65					
Xd DIR. AXIS SYNCHRONOUS	2.33	2.10	1.95	1.30	3.04	2.83	2.59	2.47					
X'd DIR. AXIS TRANSIENT	0.18	0.16	0.15	0.10	0.22	0.20	0.19	0.18					
X"d DIR. AXIS SUBTRANSIENT	0.12	0.11	0.10	0.07	0.15	0.14	0.13	0.12					
Xq QUAD. AXIS REACTANCE	1.07	0.97	0.90	0.60	1.40	1.30	1.19	1.14					
X"q QUAD. AXIS SUBTRANSIENT	0.14	0.13	0.12	0.08	0.14	0.13	0.12	0.11					
X∟ LEAKAGE REACTANCE	0.07	0.06	0.06	0.04	0.09	0.08	0.08	0.07					
X2 NEGATIVE SEQUENCE	0.13	0.12	0.11	0.07	0.14	0.13	0.12	0.11					
X0 ZERO SEQUENCE	0.08	0.08	0.07	0.05	0.09	0.08	0.08	0.07					
REACTANCES ARE SATURATED VALUES ARE PER UNIT AT RATING AND VOLTAGE INDICATED													
T'd TRANSIENT TIME CONST. T"d SUB-TRANSTIME CONST.	0.027 s 0.006 s												
T'do O.C. FIELD TIME CONST.	0.7 s												
Ta ARMATURE TIME CONST.				0.00									
SHORT CIRCUIT RATIO				1/)	(d								

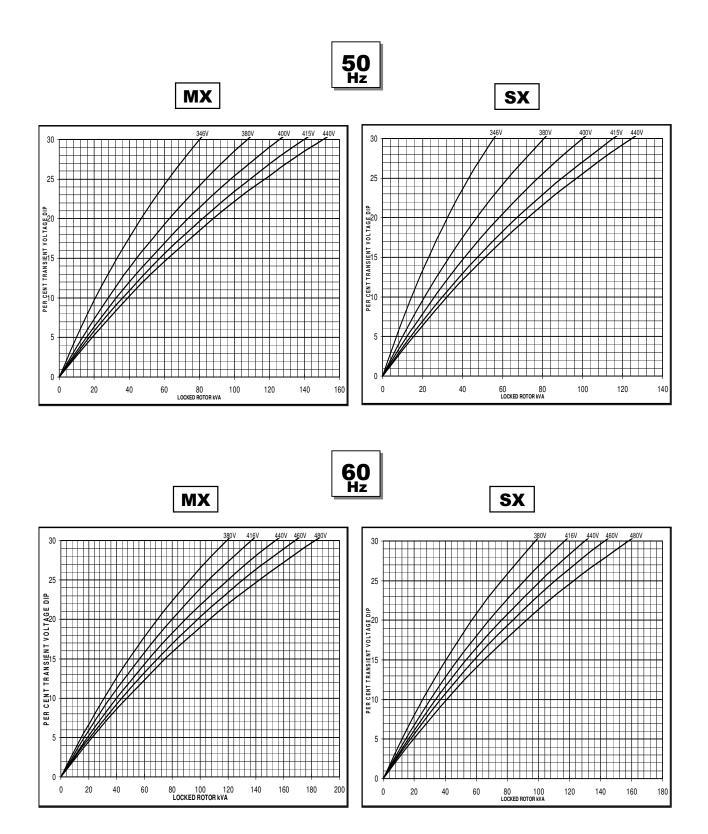


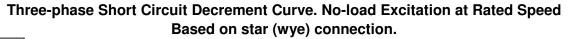


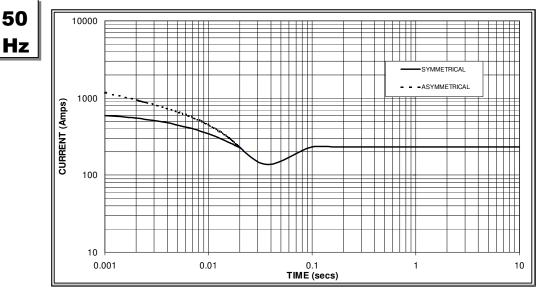



Winding 311

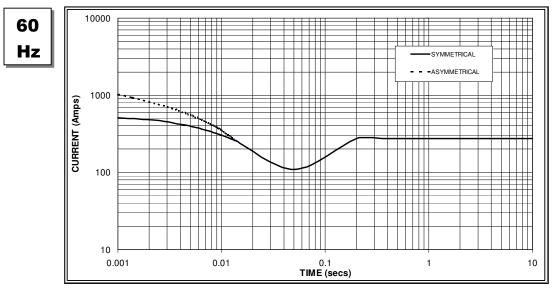
THREE PHASE EFFICIENCY CURVES







Winding 311


Locked Rotor Motor Starting Curve

Sustained Short Circuit = 230 Amps

Sustained Short Circuit = 275 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz					
Voltage	Factor	Voltage	Factor				
380v	X 1.00	416v	X 1.00				
400v	X 1.07	440v	X 1.06				
415v	X 1.12	460v	X 1.12				
440v	X 1.18	480v	X 1.17				

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

STAMFORD

UCI224D

Winding 311 / 0.8 Power Factor

RATINGS

	Class - Temp Rise	Cont. F - 105/40℃			Cont. H - 125/40 °C			Standby - 150/40 ℃				Standby - 163/27 °C					
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
Hz	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	45.0	45.0	45.0	33.6	50.0	50.0	50.0	37.5	53.0	53.0	53.0	39.1	55.0	55.0	55.0	41.2
	kW	36.0	36.0	36.0	26.9	40.0	40.0	40.0	30.0	42.4	42.4	42.4	31.3	44.0	44.0	44.0	33.0
	Efficiency (%)	88.3	88.6	88.9	89.7	87.7	88.2	88.5	89.6	87.4	87.9	88.2	89.5	87.2	87.7	88.0	89.4
	kW Input	40.8	40.6	40.5	30.0	45.6	45.4	45.2	33.5	48.5	48.2	48.1	35.0	50.5	50.2	50.0	36.9
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
112	Series Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	52.5	55.0	56.0	58.0	60.0	62.5	62.5	65.0	62.5	65.0	65.0	68.8	65.0	66.3	66.3	71.3
	kW	42.0	44.0	44.8	46.4	48.0	50.0	50.0	52.0	50.0	52.0	52.0	55.0	52.0	53.0	53.0	57.0
	Efficiency (%)	88.7	89.0	89.2	89.4	88.0	88.4	88.8	89.0	87.8	88.2	88.6	88.7	87.5	88.1	88.5	88.5
	kW Input	47.4	49.4	50.2	51.9	54.5	56.6	56.3	58.4	56.9	59.0	58.7	62.1	59.4	60.2	59.9	64.5

Dimensional and Torsional Drawing

For dimensional and torsional information please refer to the alternator General Arrangement and rotor drawings available on our website (http://stamford-avk.com/)

www.stamford-avk.com

Copyright 2022, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.